

Escuela de Ingeniería Universidad de Chile ALGEBRA MA-11A

Guía de Problemas No 3, 1999

1 Estructuras Algebraicas, Números Complejos y Polinomios.

1. Sea (G,*) un grupo y H un subconjunto de G tal que x*H=H*x, donde $x*H=\{x*h/h\in H\}$ y $H*x=\{h*x/h\in H\}$. Se define la relación de equivalencia \mathcal{R}_H en G como:

$$x\mathcal{R}_H y \iff x * y^{-1} \in H$$

(a) Probar que * es compatible con \mathcal{R}_H , es decir:

$$x\mathcal{R}_H y \wedge z\mathcal{R}_H w \implies (x*z)\mathcal{R}_H (y*w)$$

- (b) Probar que $[x]_{\mathcal{R}_H} = \{ y \in G/y = h * x \text{ para algún } h \in H \}.$
- (c) Se define para las clases de equivalencia de \mathcal{R}_H :

$$[x]_{\mathcal{R}_H} \odot [y]_{\mathcal{R}_H} = [x * y]_{\mathcal{R}_H}$$

Probar que la operación está bien definida.

- (d) Probar que $(G/H, \odot)$ es un grupo (que se llama grupo cuociente) donde $G/H = \{[x]_{\mathcal{R}_H}/x \in G\}$. Probar que $[e]_{\mathcal{R}_H} = H$, donde e es el neutro de (G, *).
- 2. (a) Calcule

$$\left(\frac{1+\sqrt{3}\cdot i}{1-i}\right)^{40}$$

(b) Sabiendo que el polinomio

$$p(z) = z^4 - 4z^3 + 10z^2 - 12z + 8$$

posée sólo raíces complejas y que una de ellas tiene módulo 2, encuentre todas las raíces del polinomio.

1

- 3. (a) Determine todos los números complejos tales que |z-2|=1.
 - (b) Resuelva la ecuación en C, $z^5 = i$.

- (c) Dibuje la región $\{z \in \mathbb{C}/ \mid z-2 \mid \leq \mid z-1 \mid \}$.
- 4. Sea (G, \otimes) un grupo y (H, \otimes) un subgrupo de (G, \otimes) . Se define para $a \in G$ y $b \in G$:

$$a \otimes H = \{a \otimes h/h \in H\}$$

Probar que:

- (a) Si $g \in H \Longrightarrow g \otimes H = H$.
- (b) Si $a \otimes H \cap b \otimes H \neq \emptyset \Longrightarrow a \otimes H = b \otimes H$.
- 5. Sea U un conjunto no vacío cualquiera y sea $\mathcal{Y}(U, \mathbb{Z}_2)$ el conjunto de las funciones de U en \mathbb{Z}_2 . A todo subconjunto $X \subseteq U$ le asociamos la función $\mathbb{1}_X : U \to \mathbb{Z}_2$ tal que,

$$1_X(x) = \begin{cases} 0 & \text{si } x \notin X \\ 1 & \text{si } x \in X \end{cases}$$

que se denomina la indicatriz del conjunto X.

- (a) Probar que si $f \in \mathcal{Y}(U, \mathbb{Z}_2)$ entonces existe $X \subseteq U$ tal que $f = \mathbb{1}_X$.
- (b) Sobre $\mathcal{Y}(U, \mathbb{Z}_2)$ se definen las siguientes operaciones:

$$(\mathbb{1}_A \oplus \mathbb{1}_B)(x) = \mathbb{1}_A(x) +_2 \mathbb{1}_B(x) (\mathbb{1}_A \bullet \mathbb{1}_B)(x) = \mathbb{1}_A(x) \cdot_2 \mathbb{1}_B(x)$$

donde $A, B \in U$ y $x \in U$.

Demuestre que $(\mathcal{Y}(U, \mathbb{Z}_2), \oplus, \bullet)$ es un anillo conmutativo con unidad.

6. Sea $f: (\mathbb{Z}_m, \oplus) \longrightarrow (\mathbb{Z}, +)$ un homomorfismo cualquiera. Demuestre que f es la función constante 0.

Indicación: Recuerde que en (\mathbb{Z}_m, \oplus) : $[1] \oplus [1] \oplus \ldots \oplus [1] = 0$ (m veces).

- 7. Realice las siguientes diviciones :
 - \bullet $x^n a^n \div x a$.
 - \bullet $x^n + a^n \div x a$.
 - $i \cdot z^3 + (3 + 8 \cdot i) \cdot z^2 + (-1 + 19 \cdot i) \cdot z + 3 \cdot z \cdot i 40 \div i \cdot z + 4 + 5 \cdot i$.
- 8. Dado un polinomio $p(x) = \sum_{k=0}^{n} a_k x^k$ se define :

$$L(p)(x) = \sum_{k=1}^{n} k a_k x^{k-1}$$

(a) Demuestre que si p(x), q(x) son polinomios de grado n y m respectivamente, entonces:

$$L(p \cdot q) = L(p) \cdot q + p \cdot L(q)$$

- (b) Pruebe por inducción sobre n, que si $p(x) = (x-d)^n$, entonces $L(p)(x) = n \cdot (x-d)^{n-1}$.
- (c) Si α es una raíz de multiplicidad m de un polinomio p(x), $\alpha \in \mathbb{R}$, $m \geq 2$, entonces α es una raíz de multiplicidad (m-1) del polinomio L(p)(x).
- 9. (a) Se sabe que 1+i es una raíz de $p(x)=x^4+x^3+x^2-4x+10$. Determine las otras raíces de p(x).
 - (b) Sea $p(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$. Sean x_i con i = 1, 2, ..., n las raices del polinomio p(x). Determine las raices del polinomio $g(x) = a_0 \mu^n x^n + a_1 \mu^{n-1} x^{n-1} + ... + a_{n-1} \mu x + a_n$ con $\mu \in \mathbb{R} \setminus \{0\}$.
 - (c) Determine las raíces del polinomio:

$$16x^4 + 8x^3 + 4x^2 - 8x + 10$$

10. En este problema demostraremos el llamado Teorema de Interpolación.

Sea K cuerpo, $n \in \mathbb{N} \setminus \{0\}$, $x_1, ..., x_n, y_1, ..., y_n \in K$, con $x_j \neq x_k$ si $j \neq k$. Entonces existe un único polinomio de grado menor o igual a n-1 en K[x] tq $\forall j = 1, ..., n$ $p(x_j) = y_j$. Llamemos a este polinomio, polinomio de interpolación de la familia $(\{x_j\}_{j=1}^n, \{y_j\}_{j=1}^n)$

- (a) Suponiendo la existencia de p(x), demuestre la unicidad.
- (b) Para cada j = 1, ..., n definimos:

$$l_j(x) = \frac{\prod_{k=1}^n {(k \neq j)} (x - x_k)}{\prod_{k=1}^n {(k \neq j)} (x_j - x_k)} \in K[x]$$

i. Determine el grado de $l_j(x)$ y pruebe que :

$$l_j(x_r) = \delta_{jr} = \begin{cases} 1, & j = r \\ 0, & j \neq r \end{cases} \quad \forall j, r = 1, ..., n$$

- ii. Demuestre que $p(x)=\sum_{j=1}^n y_j l_j(x)\in K[x]$ es polinomio de interpolación para la familia $\Big(\{x_j\}_{j=1}^n\ ,\ \{y_j\}_{j=1}^n\Big).$
- 11. Sea $J_2 = \{p(x) \in P(x) / gr(p) \le 2, \ a_0 = 0, \ a_1 \ne 0\}$. En J_2 se define la l.c.i. \triangle a través de $p(x) \triangle q(x) = \sum_{i=1}^2 c_i x^i$ en que $p(q(x)) = \sum_{i=0}^n c_i x^i$.
 - (a) Probar que (J_2, \triangle) es un grupo no abeliano.

- (b) Sea $f: J_2 \longrightarrow \mathbb{R} \setminus \{0\}$ tq $f(a_1 \cdot x + a_2 \cdot x^2) = a_1$. Probar que f es un homomorfismo epiyectivo de (J_2, \triangle) en $(\mathbb{R} \setminus \{0\}, \cdot)$.
- (c) Sea $H = \{p(x) \in J_2/a_1 = 1\}$. Probar que (H, \triangle) es subgrupo abeliano de (J_2, \triangle) .
- 12. Sea n > 2, sea $a = cos\left(\frac{2\pi}{n}\right) + i \cdot sen\left(\frac{2\pi}{n}\right)$ y sean $X, Y \in M_{nn}(\mathbb{C})$ las matrices definidas por $(X)_{jk} = a^{(j-1)(k-1)}$ $(Y)_{jk} = a^{-(j-1)(k-1)}$.
 - (a) Calcular X^2 .
 - (b) Calcular XY.
- 13. Sea $n \in \mathbb{N}$, $n \geq 2$ fijo.
 - (a) Demuestre que la suma de las raíces n-ésimas de la unidad es igual a cero.
 - (b) Demuestre que las raíces n-ésimas de un número complejo cualquiera $Z \in \mathbb{C}$, son el producto se una raíz particular $z_0 \in \mathbb{C}$ por una raíz n-ésima de la unidad.
 - (c) Concluya que la suma de las raíces n-ésimas de un complejo cualquiera, es igual a cero.
- 14. Sea I un subgrupo del grupo de los polinomios IR[x]. Sea $A = \{g(x) \in I/gr(g(x)) \ge 0\}$. Supongamos que I es tal que
 - $I \neq \{0\}$.
 - $\bullet \ (\forall p \in I) \qquad (\forall q \in I\!\!R[x]) \qquad p \cdot q \in I.$

Probar que $(\forall g \in I)$ $(\exists f \in A)$ f|g.

- 15. Sean $p(x) \in \mathbb{C}[x]$, $gr(p(x)) \ge 4$, $a, b, c \in \mathbb{R}$, con $b \ne 0$. Se sabe que :
 - El resto de dividir p(x) por $(x^2 b^2)$ es cx.
 - El resto r(x), de dividir p(x) por $(x^2 b^2)(x a)$ es un polinomio "mónico", es decir, el coeficiente asociado a x^n , donde n = gr(r(x)), es igual a 1.
 - (a) Determine los valores p(b) y p(-b).
 - (b) Justifique que $gr(r(x)) \leq 2$.
 - (c) Determine r(x)
- 16. Se
a α una raíz séptima de la unidad distinta de 1. Prue
be que :
 - (a) $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 = 0$.
 - (b) $\frac{\alpha}{1+\alpha^2} + \frac{\alpha^2}{1+\alpha^4} + \frac{\alpha^3}{1+\alpha^6} = -2$.

17. (a) Sea $f:Q\longrightarrow Q$ función. Se dirá que f es lineal afín si $\exists\, a,b\in Q\ a\neq 0$, tal que $f(x)=a\cdot x+b\ \forall x\in Q$. Sea

$$I = \{f : Q \longrightarrow Q \ funci\'on/f \ es \ lineal \ af\'in\}.$$

Probar que (I, \circ) es un grupo, donde \circ es la composición de funciones.

(b) Considere $(Q, +), ((Q \setminus \{0\}), \cdot)$. En $(Q \setminus \{0\}) \times Q$ se define la siguiente l.c.i.

$$(a,b)*(c,d) = (a \cdot c, b + a \cdot d)$$

Probar que $(\mathbb{Q}\setminus\{0\})\times\mathbb{Q},*)$ es un grupo.

- (c) Demuestre que $(\mathbb{Q}\setminus\{0\})\times\mathbb{Q},*)$ es isomorfo a (I,\circ) .
- 18. Sea (E, *) una estructura algebraica y sea R una relación de equivalencia en E que satisface la siguiente propiedad:

$$(\forall x_1, x_2, y_1, y_2 \in E)$$
 $x_1 R x_2 \land y_1 R y_2 \Rightarrow (x_1 * y_1) R (x_2 * y_2).$

Definimos una nueva l.c.i. \otimes en el conjunto cuociente E/R mediante:

$$[x] \otimes [y] = [x * y].$$

- (a) Justifique que \otimes está bien definida, es decir pruebe que la clase de x * y no depende de los representantes de [x] y de [y] que se escojan.
- (b) Muestre que si (E,*) es un grupo, entonces $(E/R,\otimes)$ también es un grupo.
- 19. (a) Considere el subconjunto de los números complejos $H = \{a + bi \mid a, b \in \mathbb{Z}\}$.
 - i. Pruebe que $(H,+,\cdot)$ es un anillo conmutativo con unidad sin divisores del cero.
 - ii. Pruebe que los elementos invertibles de H con respecto a la multiplicación son 1, -1, i, -i.
 - iii. Demuestre que un número primo x se puede escribir como producto $x=z_1\cdot z_2$, donde z_1 y z_2 son elementos no invertibles con respecto a la multiplicación en H, sí y sólo sí $x=a^2+b^2$ con $a,b\in I\!\!N$
 - (b) Sea $n \ge 2$. Probar que las raíces en \mathbb{C} de $p(x) = 1 + x + x^2 + ... + x^{n-1}$ son las raíces n-ésimas de la unidad distintas de uno.
- 20. (a) Sea $p \in K[x]$ un polinomio de grado 2 o 3. Demuestre que p es irreducible si y sólo si p no tiene raíces en K.

- (b) Sea $p \in \mathbb{C}[x]$ y $a \in \mathbb{C}$ una raíz de p. Si $p(x) = \sum_{i=0}^{n} a_i x^i$, se define el polinomio D(p) tal que $D(p)(x) = \sum_{i=1}^{n} i a_i x^{i-1}$. Se sabe que si $p, q \in \mathbb{C}[x]$ entonces $D(p \cdot q)(x) = D(p)(x)q(x) + p(x)D(q)(x)$. Probar que D(p)(a) = 0 sí y sólo sí $(x-a)^2$ divide a p(x).
- 21. (a) Sea $f:(A,*)\to(B,\Delta)$ un morfismo.
 - i. Probar que Δ es una ley de composición interna en f(A).
 - ii. Probar que $(f(A), \Delta)$ es un grupo si (A, *) es un grupo.
 - (b) Considere la operación definida en \mathbb{Z} por n*m=n+m-1. Pruebe que $(\mathbb{Z},*)$ y $(\mathbb{Z},+)$ son isomorfos.
- 22. (a) Sea $(\mathcal{G},*)$ un grupo y $f:\mathcal{G}\to\mathcal{G}$ la función definida por $f(g)=g^{-1}$ para cada $g\in\mathcal{G}$ (recordar que g^{-1} es el inverso de g para la operación *). Probar que

f es un isomorfismo $\Leftrightarrow \mathcal{G}$ es un grupo Abeliano.

- (b) Considere $\mathbb{Z}_2 \times \mathbb{Z}_3$ con la operación definida por $(a,b) \oplus (\bar{a},\bar{b}) = (a+_2\bar{a},b+_3\bar{b})$.
 - i. Pruebe que $(\mathbb{Z}_2 \times \mathbb{Z}_3, \oplus)$ es un grupo.
 - ii. Construya un isomorfismo

$$f: (\mathbb{Z}_6, +_6) \to (\mathbb{Z}_2 \times \mathbb{Z}_3, \oplus) \text{ tal que } f([1]_6) = ([1]_2, [1]_3).$$

Concluya que es único.

- 23. (a) Sea (G, *) un grupo que verifica la propiedad $\forall a, b \in G, (a * b)^2 = a^2 * b^2$. Probar que (G, *) es un grupo Abeliano.
 - (b) Sean $G = \{f : \mathbb{R} \to \mathbb{R} / \exists a, b \in \mathbb{R}, a \neq 0, f(x) = ax + b\}$ y $\bar{G} = \{f : \mathbb{R} \to \mathbb{R} / \exists b \in \mathbb{R}, f(x) = x + b\}$. Sabiendo que (G, \circ) es un grupo, probar que (\bar{G}, \circ) es un subgrupo de (G, \circ) .
- 24. (a) Calcule todas las soluciones complejas de la ecuación $z^n = -1$ para $n \ge 2$.
 - (b) Pruebe que la suma de las soluciones obtenidas en la parte i es cero. Indicación: Recuerde que $\sum_{k=0}^{m} r^k = \frac{1-r^{m+1}}{1-r}$ si $r \neq 1$.
 - (c) Pruebe que $\frac{(1+i)^{24}}{(1-i)^{20}} = -4$
- 25. (a) Calcule las raíces de $z^2 = -i$ y expréselas de la forma a + bi.
 - (b) Si $z + \frac{1}{z} = 2\cos(\alpha)$, calcule los posibles valores de $z \in \mathbb{C}$ y muestre que

$$z^n + \frac{1}{z^n} = 2\cos(n\alpha).$$

- (c) Pruebe que $\forall n \in \mathbb{N}, (1-i)^n + (1+i)^n \in \mathbb{R}.$
- 26. (a) Sea $p(X) = X^3 + a X^2 + b X + c$ un polinomio con coeficientes en \mathbb{R} . Sea r(X) el resto de la división de p(X) por (X-1). Si r(4) = 0 y X = i es raíz de p(X), calcule a, b, c.
 - (b) Sea $p(X) = a_0 + a_1 X + + a_{n-1} X^{n-1} + X^n$, con $a_0,, a_{n-1} \in \mathbb{C}$, tal que p(X) tiene n raices distintas en \mathbb{C} y si $z \in \mathbb{C}$ es raiz de p(X) entonces su conjugado \bar{z} también lo es. Demuestre que $a_0,, a_{n-1} \in \mathbb{R}$.

Indicación: estudie el producto de polinomios $(X-z)(X-\bar{z})$ donde $z \in \mathbb{C}$.

27. Sea (G, *) un grupo con neutro $e \in G$ y

 $A = \{F : G \to G / F \text{ es un isomorfismo de } (G, *) \text{ en } (G, *)\}.$

- (a) Probar que (A, \circ) es un grupo (\circ es la composición de funciones).
- (b) Para cada $g \in G$ se define la función $F_g: G \to G$ tal que $F_g(x) = g*x*g^{-1}$ en cada $x \in G$. Pruebe que:
 - i. F_g es un homomorfismo de (G, *) en (G, *).
 - ii. $F_{g*h} = F_g \circ F_h$, para todo $g, h \in G$.
 - iii. $F_e = Id$ (Id es la función identidad en G).

Concluya que F_g es un isomorfismo y que $(F_g)^{-1} = F_{g^{-1}}$ para todo $g \in G$.

- (c) Pruebe que $B = \{F_g \mid g \in G\}$ es un subgrupo de (A, \circ) .
- 28. (a) Sea (G,*) un grupo Abeliano y $H,K\subseteq G$ subgrupos de G. Se define el conjunto

$$H * K = \{h * k / h \in H, k \in K\}$$

Probar que H * K es un subgrupo de G.

- (b) Sea (G,*) un grupo tal que para cada $g \in G$ existe $n \ge 1$ tal que $g^n = g*...*g$ (n-veces) = e (el neutro de G). Probar que el único homomorfismo $F:(G,*) \to (\mathbb{Z},+)$ es la función constante F(g) = 0 en cada $g \in G$.
- (c) Sea (G, *) un grupo que satisface la propiedad a * a = e (el neutro del grupo) en cada $a \in G$, es decir, el inverso de cada elemento del grupo es el mismo elemento. Pruebe que G es un grupo Abeliano. (Ind: calcule (a * b) * (b * a)).
- 29. (a) Sea $z \in \mathbb{C}$ tal que $|z| \neq 1$ y considere $n \geq 1$. Probar que

$$\frac{1}{1+z^n} + \frac{1}{1+(\bar{z})^n},$$

(donde \bar{z} es el conjugado de z) es un número real.

(b) Exprese en forma a+bi las raíces cuartas de $z_0 = \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ (es decir, resuelva $z^4 = z_0$)

- (c) Sean z_1 y z_2 complejos tales que $|z_1|=|z_2|=1$. Pruebe que $|z_1+z_2|=|z_1|+|z_2|$ si y sólo sí $z_1=z_2$. (Indicación: Pruebe que |z|=1 y Re(z)=1 si y sólo sí z=1.)
- 30. Considere en \mathbb{R}^2 las siguientes operaciones $(a,b) \oplus (c,d) = (a+c,b+d)$ y $(a,b) \odot (c,d) = (a \cdot c,b \cdot d)$.
 - (a) Pruebe que $(\mathbb{R}^2, \oplus, \odot)$ es una anillo conmutativo con unidad.
 - (b) Pruebe que $(\mathbb{R}^2, \oplus, \odot)$ posee divisores del cero.
 - (c) Se dice que $(R_{\triangle}, \triangle, \triangle)$ y $(R_{\diamondsuit}, \diamondsuit, \diamondsuit)$ son isomorfos si existe $\varphi : R_{\triangle} \to R_{\diamondsuit}$ biyección tal que

$$\forall x, y \in R_{\triangle}, \quad \varphi(x \triangle y) = \varphi(x) \diamondsuit \varphi(y) \quad y \quad \varphi(x \triangle y) = \varphi(x) \diamondsuit \varphi(y).$$

Demuestre que $(I\!\!R^2,\oplus,\odot)$ no es isomorfo a $({\boldsymbol C},+,\cdot).$